

CPDR & RCNKu

Horizontale Kunststoffpumpe

CPDR und RCNKu

Vielseitige Standardbaureihen

Klein und groß – CPDR und RCNKu. Die beiden Baureihen unterscheiden sich konstruktions- und fertigungsbedingt im Detail. Werkstoff- und Dichtungskonzept jedoch sind identisch.

Mit 21 verschiedenen Pumpengrößen bis 2.500 m³/h lassen sich Förderaufgaben flexibel und wirtschaftlich lösen. Sie bekommen Größe und Material der Pumpe individuell auf Ihre Anforderungen abgestimmt. Strömungsoptimierte Hydrauliken sorgen dabei für wirtschaftliche Wirkungsgrade. Rheinhütte Kunststoffpumpen gibt es in sechs verschiedenen Kunststoffen.

Rheinhütte Kunststoffpumpen sind Normpumpen und können daher andere Chemienormpumpen gleicher Größe ersetzen.

Für besondere Anforderungen jenseits der Norm bieten wir Ihnen darüber hinaus maßgeschneiderte Sonderhydrauliken, die auf Ihren speziellen Förderfall ausgelegt sind – höherer Wirkungsgrad bei gleicher Pumpengröße.

Konstruktionsmerkmale

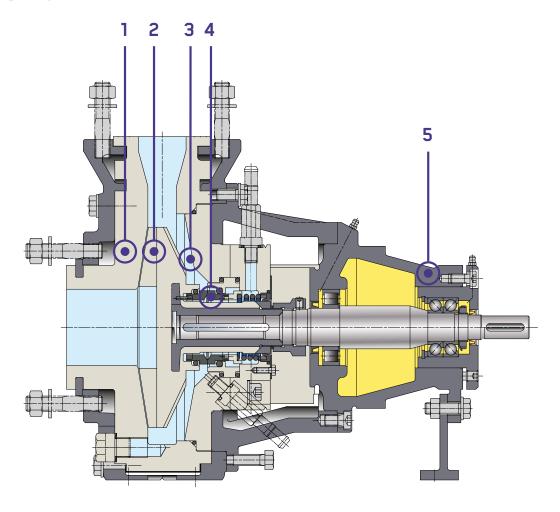
- Ausführung: horizontal, einstufig
- Konstruktion: Prozessbauweise nach ISO 2858
- Gehäuseform: Spiralgehäuse mit Einfachspirale
- Lagerträgerschmierung: Öl- oder Fettschmierung
- Aufstellungsarten: Grundrahmen geschweißt oder Grundplatte gegossen
- Umgebungstemperaturgrenze: -20 °C bis +60 °C
- Feststoffanteilgrenze:
 - ca. 5 % (bei Freistromausführung ca. 30 %)

Optionen

- Gehäuseentleerung
- Spülung der Gleitringdichtung in versch. Varianten
- Temperatur- und Schwingungsüberwachung
- Zustandsüberwachung mit i-Alert®3
- Flanschanschlüsse nach internationalen Standards
- Thermosyphonsystem
- Quenchsystem
- Vorlage- oder Ansaugbehälter
- Pumpenzubehör

Technische Daten

	CPDR	RCNKu				
Größe DN	32 bis 80	80 bis 400				
$Q_{max}(m^3/h)$	200	2.500				
H _{max} (m)	100	100				
Temperatur (°C)	-30 bis +190					
Normen	EN 22858, ISO 2858, ISO 5199					
Offenes Laufrad	Standard	-				
Geschlossenes Laufrad	-	Standard				
Freistromausführung	CPRF	RCFKu				
Flanschmotorausführung	CPDRB	-				
Abdichtung	Gleitringdichtung					



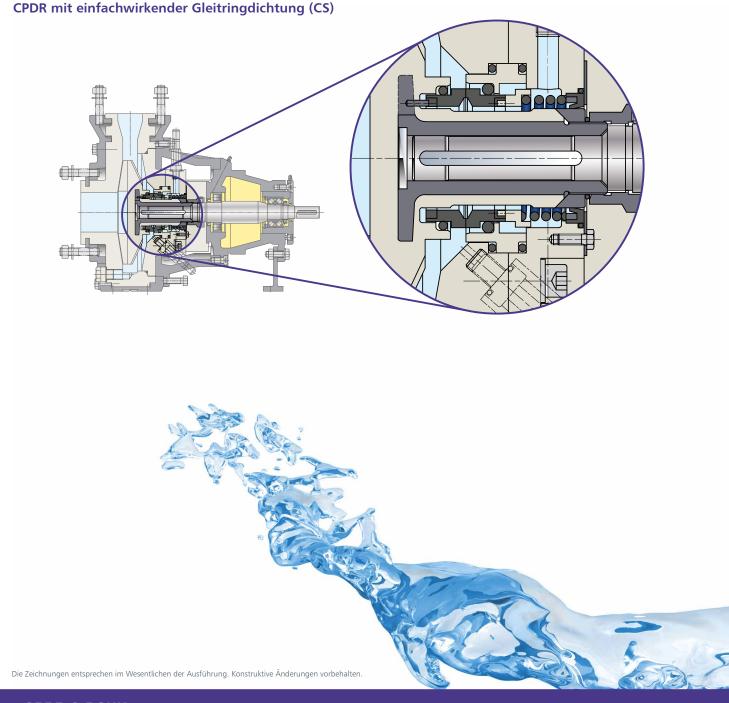
Anwendungsgebiete

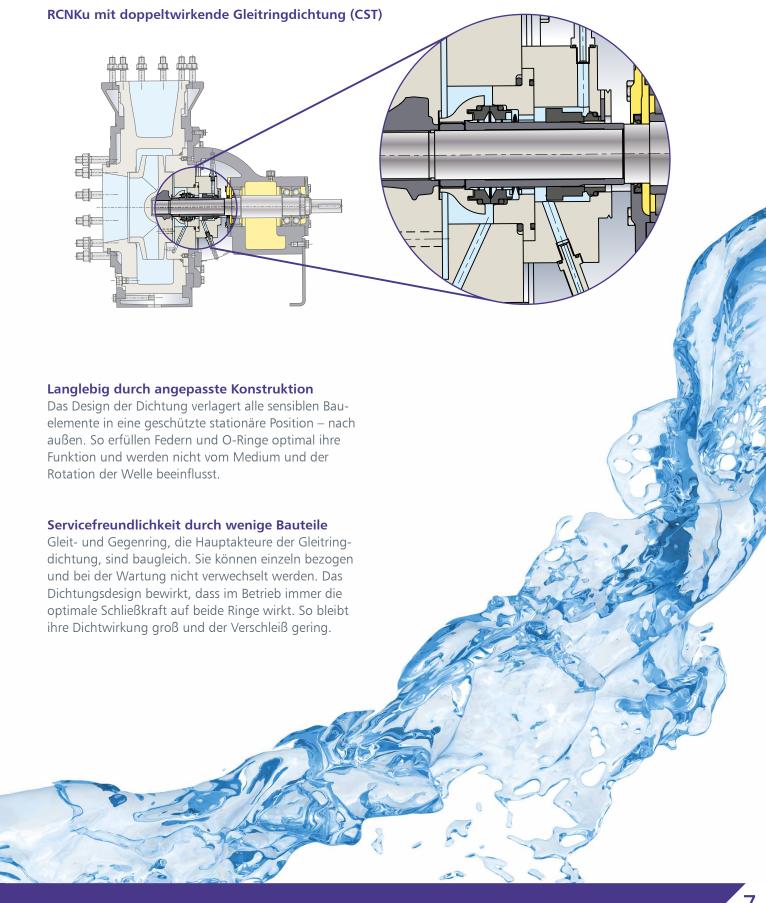
- Chemisches Abwasser
- Chloralkali-Elektrolyse
- Düngemittelproduktion
- Meerwasser
- Rauchgas-Wäscher (Müllverbrennungsanlagen)
- Salzsole
- Salzsäure
- Schwefelsäure
- Stahlindustrie
- Wäscher


Wesentliche Merkmale

CPDR & RCNKu

- Die Prozessbauweise ermöglicht eine einfache und schnelle Austauschbarkeit von Verschleißteilen.
- Hohe Feststoffmengen, Gasanteile, Fasern und grobe Verschmutzungen schließen den Einsatz von Kreiselpumpen aus. Diese Förderaufgaben lösen Freistrompumpen (engl. Vortex) problemlos. Das Laufrad ist indirekt an der Beschleunigung des Mediums beteiligt, entsprechend geringer ist der Verschleiß. Auch Gasanteile im Fördermedium werden deutlich besser toleriert. Große Durchgangsweiten erlauben mehr Betriebssicherheit.
- Strömungs- und verschleißoptimierte Dichtungseinsätze erlauben das Fördern von Medien mit einem Feststoffgehalt bis zu 5 % und bei der Freistromausführung (Seite 5) sogar bis 30 %.
- 4 Gleitringdichtungskonzept, dass bei kristallisierenden, heißen oder feststoffbeladenen Medien geeignet ist. Ein optimiertes Design sorgt für reibungslosen Ein- und Ausbau der Dichtungen und einen ökonomischen Einsatz.
- Ein robuster Lagerträger sorgt für geringe Durchbiegungen an der Welle und für lange Standzeiten bei Wälzlagern sowie der Gleitringdichtung auch in Grenzbereichen.


Die Zeichnungen entsprechen im Wesentlichen der Ausführung. Konstruktive Änderungen vorbehalten.



Gleitringdichtung

Optimal bei schwierigen Medien durch passgenauer Design

Das Design von Pumpe und Gleitringdichtung muss in besonderem Maße aufeinander abgestimmt sein. Strömungsoptimierte Freiräume und Kanäle passen genau zu den Dichtungskomponenten und individuellen Spülkonzepten. So können selbst größere Mengen an Feststoffen, kristallisierende oder verklebende Fördermedien der Dichtung nichts anhaben. Die hochwertigen Dichtungskonzepte CS (einfachwirkend) und CST (doppeltwirkend) der Rheinhütte Kunststoffpumpen machen den Betrieb sicher und die Wartung einfach – für eine ökonomische Chemienormpumpe. Optional sind verschiedene Spülvarianten möglich.

Kunststoff-Werkstoffe

Unsere Werkstoffexperten helfen bei der Wahl des richtigen Werkstoffes. Der Einsatz von Kunststoffen ist besonders bei Anwendungsfällen mit hohen Anforderungen an die Korrosionsbeständigkeit gefragt, um einen langen Lebenszyklus der Pumpe zu gewährleisten.

PP - Polypropylen

Dieser Kunststoff ist besonders geeignet für einfache, gängige Anwendungen. Er bietet bei Temperaturen von 0 bis 100°C erstaunliche Leistungen. PP hat sich bei Säuren, Laugen und Salzlösungen ebenso bewährt wie in Salzsäurebeizen.

PE 1000 (UHMWPE) - Polyethylen

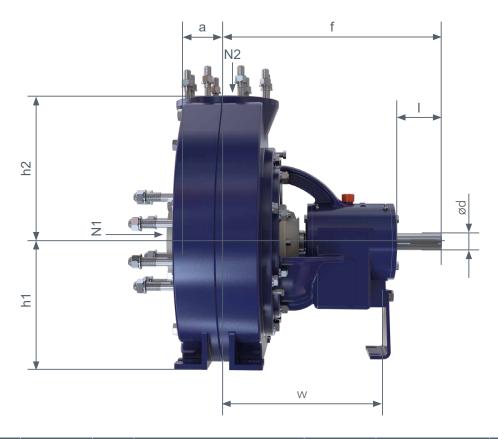
Herausragende Eigenschaft dieses hochmolekularen Polymers ist sein Verschleißwiderstand bei Feststoffen im Fördermedium. Hinzu kommt ein breites Spektrum an Korrosionsfestigkeit.

Im Temperaturbereich von -50 bis $+80\,^{\circ}\text{C}$ ist PE 1000 in vielen Fällen eine Alternative zu Edelstählen.

PE 1000R - Polyethylen

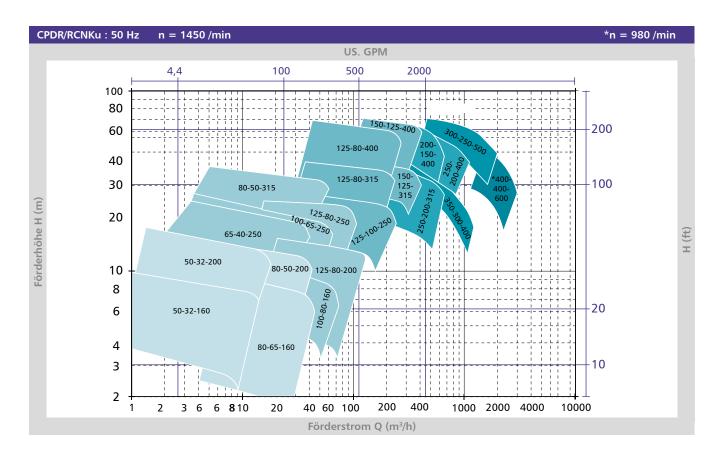
PE 1000R ist eine Weiterentwicklung des Standard-Polyethylens PE 1000 mit verschleißminimierenden Additiven für eine bis zu 20 % höhere Beständigkeit – für den Einsatz in stark verschleißenden Suspensionen mit prozessbedingt kritischem Feststoffgehalt. Der Werkstoff ist bei Temperaturen von -50 bis +80 °C einsetzbar.

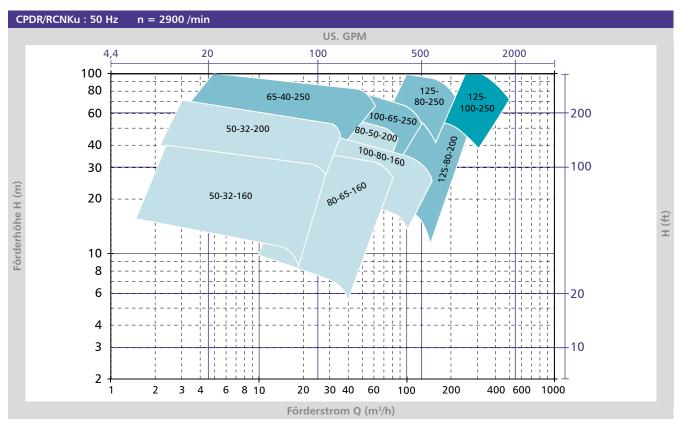
PVDF - Polyvinylidenfluorid

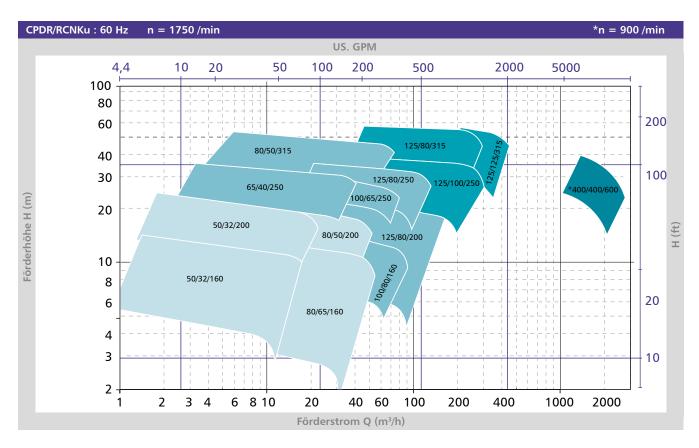

Die Teilfluorierung dieses Polymers erhöht seine chemische Beständigkeit um ein Vielfaches. PVDF ist gegen die meisten Lösungsmittel, Säuren und Oxidationsmittel beständig. Für viele Anwendungen in der chemischen Industrie ist PVDF von -20 bis 130°C ein optimaler Werkstoff.

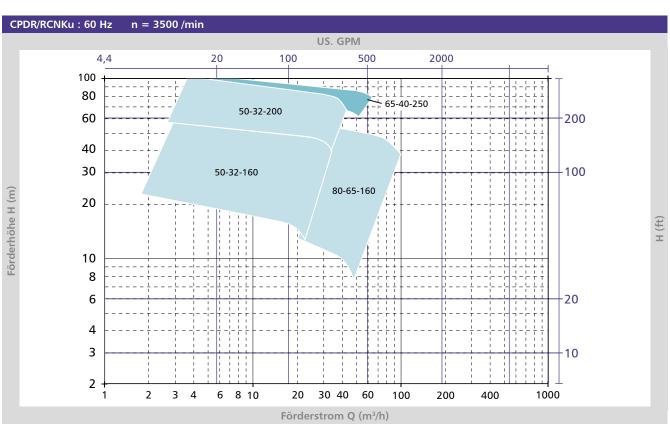
PTFE - Polytetrafluorethylen

PTFE zeigt eine hohe Beständigkeit gegenüber den meisten organischen und anorganischen Medien über einen weiten Temperaturbereich. Kreiselpumpen aus PTFE sind von -50°C bis 180°C einsetzbar.




Pumpen- und Einbaumaße


Größe		LT	Pumpenmaße			Fußmaß	Wellenende		Flanschmaße		
Globe	L'	a	f	h ₁	h ₂	w	ød	1	N2	N1	
50-32-160	CPDR	1	80	385	132	160	285	24	50	32	50
50-32-200	CPDR	1	80	385	160	180	285	24	50	32	50
80-65-160	CPDR	1	100	385	160	180	285	24	50	65	80
80-50-200	CPDR	1	100	385	160	200	285	24	50	50	80
65-40-250	CPDR	2	100	500	180	225	370	32	80	40	65
80-50-315	CPDR	2	125	500	225	280	370	32	80	50	80
100-80-160	CPDR	2	100	500	160	200	370	32	80	80	100
100-65-250	CPDR	2	125	500	200	250	370	32	80	65	100
125-80-200	CPDR	2	125	500	180	250	370	32	80	80	125
125-80-250	RCNKu	2	125	500	225	280	370	32	80	80	125
125-80-315	RCNKu	3	125	530	250	315	370	42	110	80	125
125-80-400	RCNKu	3	125	530	280	355	370	42	110	80	125
125-100-250	RCNKu	3	140	530	225	280	370	42	110	100	125
150-125-315	RCNKu	3	140	530	280	355	370	42	110	125	150
150-125-400	RCNKu	3	140	530	315	400	370	42	110	125	150
200-150-400	RCNKu	4	160	670	315	450	500	48	110	150	200
250-200-315	RCNKu	4	180	670	355	450	500	48	110	200	250
250-200-400	RCNKu	4	180	670	355	500	500	48	110	200	250
300-250-500	RCNKu	6	250	935	475	670	680	75	150	250	300
350-300-400	RCNKu	6	300	935	500	670	680	75	150	300	350
400-400-600	RCNKu	7	340	1160	700	550	900	100	180	400	400


Leistungsbereiche

Lagerträger 1 2 3 4 6 7

An ITT Brand

ITT RHEINHÜTTE Pumpen GmbH Rheingaustraße 96-98 D-65203 Wiesbaden T +49 611 604-0 info@rheinhuette.com www.rheinhuette.de

